IDEAL Inference on Conditional Quantiles via Interpolated Duals of Exact Analytic L-statistics

نویسندگان

  • David Kaplan
  • David M. Kaplan
چکیده

We examine inference on conditional quantiles from the nonparametric perspective of local smoothing. This paper develops a framework for translating the powerful, high-order accurate IDEAL results (Goldman and Kaplan, 2012) from their original unconditional context into a conditional context, via a uniform kernel. Under mild smoothness assumptions, our new conditional IDEAL method’s two-sided pointwise coverage probability error is O(n−2/(2+d)), where d is the dimension of the conditioning vector and n is the total sample size. For d ≤ 2, this is better than the conventional inference based on asymptotic normality or a standard bootstrap. It is also better for other d depending on smoothness assumptions. For example, conditional IDEAL is more accurate for d = 3 unless 11 or more derivatives of the unknown function exist and a corresponding local polynomial of degree 11 is used (which has 364 terms since interactions are required). Even as d→∞, conditional IDEAL is more accurate unless the number of derivatives is at least four, and the number of terms in the corresponding local polynomial goes to infinity as d → ∞. The tradeoff between the effective (local) sample size and bias determines the optimal bandwidth rate, and we propose a feasible plug-in bandwidth. Simulations show that IDEAL is more accurate than popular current methods, significantly reducing size distortion in some cases while substantially increasing power (while still controlling size) in others. Computationally, our new method runs much more quickly than existing methods for medium and large datasets (roughly n ≥ 1000). We also examine health outcomes in Indonesia for an empirical example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional order statistic approximation for nonparametric conditional quantile inference

Using and extending fractional order statistic theory, we characterize the O(n−1) coverage probability error of the previously proposed confidence intervals for population quantiles using L-statistics as endpoints in Hutson (1999). We derive an analytic expression for the n−1 term, which may be used to calibrate the nominal coverage level to get O(n−3/2 log(n)) coverage error. Asymptotic power ...

متن کامل

Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics

We provide novel methods for nonparametric inference on quantile differences between two populations in both unconditional and conditional settings. Under (conditional) independence of a binary treatment and potential outcomes, these quantile differences are (conditional) quantile treatment effects. These methods achieve highorder accuracy by using the probability integral transform and a Diric...

متن کامل

Exact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes

Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...

متن کامل

Computing Critical Values of Exact Tests by Incorporating Monte Carlo Simulations Combined with Statistical Tables.

Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p-values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo gen...

متن کامل

Distribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan

Extended Abstract. Let Xi1 ,..., Xini   ,i=1,2,3,....,k  be independent random samples from distribution $F^{alpha_i}$،  i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and  M'i,ni  respectively, denote the maximum and minimum of the ith sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012